Key Management and ANSI X9.44

Burt Kaliski, RSA Laboratories February 10, 2000 NIST Workshop on Key Management Using Public-Key Cryptography

- Key Establishment Using Factoring-Based Public Key Cryptography for the Financial Services Industry (draft)
- Editor: Bob Silverman
- Scope: Management of symmetric keys with public-key techniques based on the integer factorization problem
- Latest draft: January 2000

- Key pair generation
- Cryptographic primitives
- Encryption scheme
- Auxiliary functions

• RSA key pairs

- public key: (n, e)
- private key: (n, d)
 - where $n = p \ q$, e odd, $d = e^{-1} \mod \text{Icm} ((p-1), (q-1))$
- key size: 1024, 1280, 1536, ... bits

• Rabin-Williams (RW) key pairs

- as above, except:
 - $p \equiv 3 \mod 8, d \equiv 7 \mod 8$
 - e even, $d = e^{-1} \mod (\frac{1}{2} \text{ Icm } ((p-1), (q-1)))$
- Prime generation via ANSI X9.80

- IFEP1: RSA Encryption
 - $-c = m^e \mod n$
 - m = message representative, c = ciphertext
- IFDP1: RSA Decryption
 - $-m = c^d \mod n$
- IFEP2: RW Encryption
- IFDP2: RW Decryption

- ES-OAEP: Encryption with Optimal Asymmetric Encryption Padding
 - based on Bellare-Rogaway (1994); compatible with IEEE P1363, PKCS #1 v2.0
 - provably secure in random oracle model
- Encryption operation:
 - c = IFEP (m) where m = OAEP-ENCODE (M, P)
 - *M* = message
 - P = encoding parameters (opt.)
- Decryption operation:
 - M = OAEP-DECODE(m, P) where m = IFDP(c)

- Hash function: SHA-1
- Mask generation function: MGF1
- (Key construction functions currently in annex)

- Security requirements
- Annexes:
 - random number generation [\rightarrow ANSI X9.82]
 - key pair generation [\rightarrow ANSI X9.80]
 - implementation considerations
 - examples
 - ASN.1 syntax
 - example key management protocols
 - mathematical background [→ ANSI X9.31, X9.80, etc.]

- Current ANSI X9.44 specifies an encryption scheme, but no key management protocols
 - (except informative examples in annex)
- But scope includes symmetric key management
- How much further to go?
- Many possible key management protocols based on ANSI X9.44 encryption scheme
 - some are still research topics

- Following IEEE P1363 classification:
- A scheme is a set of related cryptographic operations
 - e.g., encryption scheme, signature scheme, key agreement scheme, identification scheme
- A protocol is a sequence of operations to be applied by two or more parties
 - e.g., entity authentication protocol, key establishment protocol (or combination)
 - may involve operations from more than one scheme

Scheme Standards

- ANSI X9.30:1, X9.31, X9.62
- ANSI X9.42, X9.44 (?)
- FIPS 186-2
- IEEE P1363
- ISO/IEC 9796-1, -2, -3
- ISO/IEC 14888-3

Protocol Standards

- ANSI X9.63
- ANSI X9.70
- FIPS 196
- Key management FIPS
- ISO/IEC 9798-3
- ISO/IEC 11770-3
- ... also, IKE [IPsec], SSL / TLS, S/MIME / CMS key management

- How many parties?
- How many key pairs?
- When to generate key pairs?
- How to distribute public keys?
- What is message M?
- What are parameters P?
- What else is needed?
 - signature scheme?

- What are the application requirements?
 - one-pass?
 - responder key pair only?
 - computational load?
- What are the security goals?
 - implicit key authentication?
 - key confirmation?
 - key control?
 - replay protection?
 - forward secrecy?
 - entity authentication?
 - etc.

- Applications using key management:
 - S/MIME / CMS (mail / message security)
 - SSL / TLS (session security)
- Key management standards:
 - ISO/IEC 11770-3
 - ANSI X9.70

- Alice needs to transport a content encryption key K to Bob in one pass
- Protocol:

- (subset of ISO/IEC 11770-3 KT1)

A: $c = E_B(K)$

 $A \rightarrow B$:

B: $K = D_B(c)$

 Current encryption scheme is PKCS #1 v1.5 or ANSI X9.42 variant; OAEP indicated for future

Implicit key authentication: B

Key confirmation: none

Key control: A

Replay protection: none

Entity authentication: none

Forward secrecy: A

- Alice needs to establish a session key K with Bob but only Bob may have a public key
- Protocol:

A: $c = E_{B}(\pi)$

 $A \rightarrow B$: c, R_A

B: $\pi = D_B(c)$; K, $K' = KDF(\pi, R_A, R_B)$

 $B \rightarrow A$: R_B , MAC_K (2, B, A, R_B , R_A)

 $A \rightarrow B$: $MAC_{K}(3, A, B, R_{A}, R_{B})$

• where π , R_A , R_B are random

Implicit key authentication: B

Key confirmation: both

Key control: both

Replay protection: both

Entity authentication: B

Forward secrecy: A

- Information technology -Security techniques -Key management - Part 3: Mechanisms using asymmetric techniques (draft)
- Editor: Xuejia Lai
- Scope: Key management mechanisms based on asymmetric cryptographic techniques, including:
 - symmetric key agreement
 - symmetric key transport
 - public key distribution

- Seven key agreement mechanisms
- Six key transport mechanisms
- Abstraction of underlying schemes
 - key agreement, encryption, and/or signature schemes
 - · possibly from different families
 - may include ANSI X9.44 encryption scheme
- Many variations, different attributes:
 - one-pass, two-pass, three-pass
 - implicit key authentication, key confirmation, forward secrecy, ...

- Management of Symmetric Keys Using Public Key Algorithms (draft)
- Editor: Rich Ankney
- Scope: Protocol elements for establishing symmetric keys using ANSI-approved public key algorithms, for interactive (session-oriented) key management
 - store-and-forward key management addressed in ANSI X9.73, Cryptographic Message Syntax

- Seven key agreement mechanisms
- Five key transport mechanisms
- One "hybrid" mechanism
- Abstraction of underlying schemes
- Similar variety to ISO/IEC 11770-3

- ANSI X9.44 provides a cryptographic tool for key management
 - encryption scheme, not yet management protocol
- Example key management standards provide a useful model
 - abstraction of underlying schemes
 - multiple protocols from multiple families
- Industry practice important to consider
- Bigger questions: application requirements, security goals

• ANSI	American National Standards Institute
• ANSI X9.31	Digital Signatures using Reversible Public Key Cryptography (rDSA)
• ANSI X9.42	Agreement of Symmetric Keys using Discrete Logarithm Cryptography
• ANSI X9.62	The Elliptic Curve Digital Signature Algorithm (ECDSA)
• ANSI X9.63	Key Agreement and Key Transport using Elliptic Curve Cryptography

• ANSI X9.70	Management of Symmetric Keys using Public Key Algorithms
• ANSI X9.80	Prime Number Generation, Primality Testing and Primality Certificates
• ANSI X9.82	Random Number Generation
• ASN.1	Abstract Syntax Notation 1
• CMS	Cryptographic Message Syntax
• ES-OAEP	Encryption Scheme using OAEP
• FIPS	Federal Information Processing Standard

• FIPS 186-2	Digital Signature Standard (DSS)
• FIPS 196	Entity Authentication using Public Key Cryptography
• IEEE	Institute of Electrical and Electronics Engineers
• IEEE P1363	Standard Specifications for Public Key Cryptography
• IFDP	Integer Factorization Decryption Primitive
• IFEP	Integer Factorization Encryption Primitive

• IKE **Internet Key Exchange Internet Protocol Security** Ipsec ISO/IEC **International Standards** Organization/International **Electrotechnical Commission** • ISO/IEC 9796-1, Digital Signature Schemes **Giving Message Recovery** -2,-3 • ISO/IEC 9798-3 **Entity Authentication using a Public Key Algorithm** • ISO/IEC 11770-3 Key Management : Mechanisms using Asymmetric Techniques

• ISO/IEC 14888-3 Digital Signatures with Appendix

• OAEP Optimal Asymmetric EncryptionPadding

OAEP-DECODE OAEP decoding operation

• OAEP-ENCODE OAEP encoding operation

SHA-1 Secure Hash Algorithm 1

• S/MIME Secure Multipurpose Internet

Mail Extensions

• SSL Secure Sockets Layer

• TLS Transport Layer Security